7th International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2021): 24 April 2021, online streaming event

Keynote Lecture

Integration of Multiple Spatiotemporal Demographic Data and Its Applications for Disaster Mitigation Planning

Toshihiro OSARAGI Tokyo Institute of Technology

Outline

Background & Motivation

- Spatiotemporal Demographic Data (its potential and limitation)
- Integration Method (1) for Demographic data (building use / purpose / attribute)
- Integration Method (2) for Demographic data (inflow / outflow / static)
- Applications for Disaster Mitigation Planning
- ✓ Summary and Conclusions

Shibuya City in Tokyo

A picture taken from a model produced by Google Earth

Shibuya City in Tokyo

Background

Ordinal modeling techniques of environment and urban systems based only on static physical objects do not always describe a certain aspects of their realities

The next step in modeling of the urban environment is to take people into account

In order to consider people in spatial models, it would be a possible means to use spatially referenced demographic data (Census Data)

Background

Most estimates of human activities have been estimated based on static population distributions (Census Data)

The actual spatial distribution of people changes by the hour, or even by the minute, since they are travelling for a variety of purposes over long distances

Person-Trip Survey Data (PT Data) can provide us the information about the dynamically varying spatiotemporal distribution of people

Person Trip Survey Data (PT Data)

Questionnaire-based survey

Regions:

Greater Tokyo Metropolitan Area

Sampling:

Random sampling based on census data

(1,235,883 persons from 32,896,705 persons)

Valid data:

883,044 samples

sampling ratio = 2.68 %

(= 883,044 / 32,896,705)

Contents:

Personal attributes, Departure/ Arrival Location and Time, Purpose of trip, Means of trip, ... etc.

Survey Area of PT Data

Numbered Subdivision of Area for Address

Zone of PT Data

Background / Motivation

Person-Trip Survey Data (PT Data) provide us the information about the dynamically varying spatiotemporal distribution of people.

However

The problem with "zone" is that they are not regular in size making inter-comparisons very difficult.

Limitation of PT-data (1)

Limitation of PT-data (2)

Person Trip Survey Data (PT Data)

Summary of Strengths / Limitations

Enhance these urban demographic big-data by complementing the disadvantages and utilizing the advantages

Outline

Background & Motivation

- Spatiotemporal Demographic Data (its potential and limitation)
- Integration Method (1) for Demographic data (building use / purpose / attribute)
- Integration Method (2) for Demographic data (inflow / outflow / static)
- Applications for Disaster Mitigation Planning
- ✓ Summary and Conclusions

Attribute/ Purpose of Stay/ Building use

Estimating Number of People by Each Building Use

Location Characteristic Factor

Location Characteristic Factor

Generalization of Model

Calibration Method of Model

Explanatory Variables

No.	Building use	Examples		
1	Public / Religious facility	Government office, Museum, Temple and shrine		
2	Educational facility	Elementary/junior high/high school, University, Vocational school, Study cram school		
3	Medical / welfare facility	Hospital, Nursing care welfare facility, etc.		
4	Office	Logistics, Post office, Finance, Insurance, Real estate, Industry		
5	Restaurant / Bar	Home delivery, Restaurant		
6	Commercial facility	Service, Sales business, Automobile industry (including automobile repair business)		
7	Mass retailer	Supermarket, Department store, Large store, etc.		
8	Hotel	Hotel, Inn		
9	Sports / Entertainment facilities	Sports facility, Entertainment		
10	Apartment house	Flat, Apartment house, Dormitory, Company house		
11	Detached house	Detached house		
12	Railway station	The number of railways (FY2005 National Land Numerical Data)		
13	Park (outside buildings)	Area of park (Land Use Current State Survey Data, 2011)		

Explanatory Variables (Predictive model)

	Ν	Duilding use	Size of building		
	Ο.	Building use	Small	Medium	Large
	1	Public / Religious facility	∼ 150 m²	150~600 m ²	600 m²∼
	2	Educational facility	∼700 m²	700∼3300 m²	3300 m²∼
	3	Medical / welfare facility	∼ 175 m²	175~350 m ²	350 m²∼
	4	Office	∼80 m²	80~210 m ²	210 m²~
	5	Restaurant / Bar	∼75 m²	75∼150 m²	150 m²≁
	6	Commercial facility	∼105 m²	105~225 m ²	225 m²∼
Single	7	Mass retailer	∼190 m²	190~360 m ²	360 m²≁
building	8	Hotel	∼ 550 m²	550~1600 m ²	1600 m²∼
	9	Sports / Entertainment facilities	∼260 m²	260~840 m ²	840 m²∼
	10	Apartment house	∼200 m²	200~500 m ²	500 m²∼
	11	Detached house	∼80 m²	80~160 m²	160 m²≁
	12	Railway station	The number of railways (FY2005 National Land Numerical Data)		
	13	Park (outside buildings)	∼ 330 m²	330~1120 m ²	1120 m²∼
	14	Commercial based complex (1)	∼260 m ²	260∼540 m ²	540 m²∼
Compound	15	Commercial based complex (2)	∼210 m ²	210~710 m ²	710 m²≁
use	16	Office based complex (1)	∼240 m ²	320~770 m ²	770 m²∼
	17	Office based complex (2)	∼ 330 m²	240~870 m ²	870 m²~
Study Area

(500 m by 500 m grid cell, the total number of cells is 806)

Validation of Descriptive Model

Validation of Descriptive Model

Validation of Predictive Model

Validation of Predictive Model

More adequate explanatory variables to describe the location characteristics are needed

Location Characteristic Factor β_i

Spatial distribution of the estimated values of location characteristic factor β_i

Temporal Change of Density α_i by Building Use

Density of number of people by building use per 100 m², for the descriptive model

Temporal Change of Density α_i by Building Use

Density of number of people by building use per 100 m², for the descriptive model

Temporal Change of Density α_i by Building Use

Density of number of people by building use per 100 m², for the descriptive model

Number of People by Building Use

Number of People by Building Use

Key Concept for Linking Population Statistics

Estimating the Number of People by Purpose

Number of People by Building Use in Specific Cell

Ueno Railway station

Number of People by Purpose in Specific Cell

Ueno Railway station

Number of People in Commercial Facilities

Female

Personal Attributes in Shibuya

Personal Attributes in Ginza

Personal Attributes in Akihabara

Personal Attributes in Osaki-hirokoji

Outline

Background & Motivation

- Spatiotemporal Demographic Data (its potential and limitation)
- Integration Method (1) for Demographic data (building use / purpose / attribute)
- Integration Method (2) for Demographic data (inflow / outflow / static)
- Applications for Disaster Mitigation Planning
- ✓ Summary and Conclusions

Konzatsu Tokei® (KT) data

Mobile phone location data acquired from GPS

Data on the flow of people, showing where they came from and where they went

Strengths	Able to grasp movement of people
	Able to get data in quasi real time data
Limitations	Low sample rate (0.2~0.3%)
	Few kinds of attributes (age, gender)

Advantages/ Disadvantages

Integration of Demographic Data

Data Used for Integration

Data Used for Integration

Outline of Integration Method

Maximum likelihood estimation

Study Area and Demographic Data

Static/Outflow/Inflow population

(c) Number of Stay/Outflow/Inflow in each grid estimated by using MSS data and PT data

(d) Number of Outflow/Inflow estimated by maximum likelihood method

Takashimadaira

Housing estate

Tokyo

Business center

Shinjuku Commercial & business

Shinagawa

Business center

Pedestrian Flow at Shinagawa Station

(8:00 - 9:00)

Pedestrian Flow at Shinagawa Station

(8:00 - 9:00)

Temporal Change of Outflow/Inflow Population

Clockwise 20 7~8 8~9 $_{c}n_{i}^{\prime}$ ople) 15 Inflo Inflow 10 6~ 9~10 17~18 5 18~19 20~2 10 15 20 26~2 Outflow Outflow e) $_{b}n_{i}^{t}$ Shinagawa (Business district)

Counterclockwise

Temporal Change of Outflow/Inflow Population

Spatial distribution of value of Surface Area

Outflow/Inflow on Weekday at Shinjuku Station

Outflow/Inflow on Weekend at Shinjuku Station

Outline

Background & Motivation

- Spatiotemporal Demographic Data (its potential and limitation)
- Integration Method (1) for Demographic data (building use / purpose / attribute)
- Integration Method (2) for Demographic data (inflow / outflow / static)
- ✓ Applications for Disaster Mitigation Planning
- ✓ Summary and Conclusions

Hanshin-Awaji Earthquake 1995/1/17 Tue 5:46

Many people lost their lives by **collapsed houses**. At the same time, however, 70% of rescued people were rescued by the **neighbors** including younger people.

Haiti Earthquake 2010/1/12 Mon 16:53

They had difficulty in rescue activities without electric power during the night.

East Japan Earthquake 2011/3/11 Fri 14:46

Many people who **temporarily came back home** were killed by tsunami.

Framework of Simulation System

Wooden Densely Built-up Residential Area

Completely Destroyed Buildings

Rubble Outflow of Destroyed Building

Street Blockage by Rubble Outflow

Buildings of Fire Outbreak

Fire Spreading and Wide Area Evacuation

Framework of Simulation System

Fire Spreading and Wide Area Evacuation

People with Difficulty in Evacuation

People with Difficulty in Evacuation

Percentage of people who could not evacuate among people who tried to evacuate.

Ratio of People with Difficulty in Evacuation

Framework of Simulation System

Background

Tokyo Government has enacted the ordinance for people with difficulty in returning home.

- (1) Suppression of returning home behavior from secured places (school/ workplace).
- (2) Providing information about disaster situation.
- (3) Temporary Shelters for people with difficulty in returning.
- (4) Support Stations for people returning home on foot.

Questions:

The number of facilities, size, and arrangement is sufficient? If not, how can we reduce congestion of facilities?

Evaluation by simulation

Main Roads in Simulation

Facilities to be Analyzed in Simulation

Temporary Shelter

ex: City hall, Concert hall, High school (Public facilities)

These facilities are destinations for those who are going to stay

Support Station

Train Station

ex: Convenience stores/ Gas stations ex: Large Train stations

People drop in at these facilities while traveling for toilets and a rest on the way returning home

Temporary Shelters

Ex: City hall, Concert hall, High school (Mainly public facilities)

Support Stations

Train Stations

Questionnaire Survey on People's Behavior

Responders

Occupation: Ordinal employee / Student Location of workplace /school: Inside 23 special districts in Tokyo Means of transportation: Public transportation (Train or bus) Attributs: Family type, Sex, Age, Address of workplace/school, Address of house Number of responders: 2,348 persons

Behavior

1: Stay at school or workplace/ Walk toward school or workplace

Destinations of Walkers

Movement of Walkers to Destinations

Behavior after Abandon of Movement

When walkers approached a place within 2 km from the walking limit distance

Behavior after Abandon of Movement

the walking limit distance

Spatial Distribution of Disaster Facilities

Demonstration of Simulation

Walkers,
Level of Crowding at Temporary Shelter,
Level of Crowding at Support Station,
Number of stayers at Train Station

Example of Specific Person

- Sex: Female
- Age: 40 years old
- Family: Husband + Two Kids
- Employment status: Full-time
- Workplace: Vicinity of Tokyo station
- Location of home: 25 km from workplace

Returning Home Behavior in Simulation

Level of Crowding of Temporary Shelters

Spatial Distribution of Level of Crowding

Number of People taking Rest at Support Station

※) Average value of Level of Crowding within 20 km from the city center

Number of People taking Rest at Support Station

Elapsed time after event occurs (minutes)

Average value of Level of Crowding of facilities located in the 8 to 20 km section from the city center

Number of People Staying at Train Stations

Number of People Staying at Train Stations

Returning Home Behavior in Simulation

Walkers,
Level of Crowding at Temporary Shelter,
Level of Crowding at Support Station,
Number of stayers at Train Station

Weekday 14:00

We need to develop technologies to estimate and control the post-disaster crowd-flow using demographic big data, and AI technology

Framework of Simulation System

Tokyo Metropolitan

Web Application of Fire-Spread Simulation

Web Application of Fire-Spread Simulation

Spatial Distribution of Fire-Spread Potential

- 1. All buildings (2,784,123) in Tokyo Metropolitan
- 2. Earthquake occurs in a winter evening (18:00)
- 3. Wind is from the north with a speed of 8 m/s

Spatial Distribution of Fire-Spread Potential

Reduction of Burnt-down Buildings by FSP

Normal Time (without Blockage)

Access time: 2.1 minutes

Street Blockage by Collapsed Buildings

Access time: 5.7 minutes

Disaster Information Collection (5 minutes by 0.5% of residents)

Access time: 2.4 minutes

Average Access Time

Ratio of Collected Information

Effects of Information Collection

Flame Circumference and Fire Brigade

Source : http://www.ddt33.dpri.kyoto-u.ac.jp/katsudou/h14_happyoukai_pdf/h15_0801_6_2.pdf

Growth of Perimeter of Fire Surface

Outline

Background & Motivation

- Spatiotemporal Demographic Data (its potential and limitation)
- Integration Method (1) for Demographic data (building use / purpose / attribute)
- Integration Method (2) for Demographic data (inflow / outflow / static)
- Applications for Disaster Mitigation Planning
- ✓ Summary and Conclusions

Summary and Conclusions (1)

- We pointed out limitations of the population statistics based on the location information of mobile phone users, in which detailed personal attribute information is being concealed to protect privacy
- We proposed an integration method for enriching the value of the population statistics by adding the detailed information on the attributes and the purposes of their stays
- We demonstrated that it is possible to grasp the spatiotemporal characteristics of population distribution attached with detailed attributes information such as their age, gender, and purposes that vary according to the time, location, and building use where they are

Summary and Conclusions (2)

- We proposed a method for estimating the spatiotemporal distribution of static and transient populations of urban areas by integrating existing demographic data
- We demonstrated an example of urban analysis from new and never-before employed points of view
- We demonstrated the application examples of integrated demographic data, which include simulation analysis on Returning Home Behavior, Evacuation Behavior, Firefighting Behavior.
- There is a growing demand for data that allows highly accurate understanding of the spatiotemporal distribution of both moving and static people in urban areas with detailed attributes

Future Research

- We need to discuss differences and commonalities in population statistics, which are currently available in other countries, in order to expand the availability of the models for other data sources available in other countries
- Construct a model to evaluate the influence of large-scale public events or natural disaster on people's movements, which assists mitigating crowding and avoiding risks, identifying appropriate initial responses, and guiding evacuation